
The Key To
Remediating
Secrets in Code

Application Risk Platform
From Design to Code to Cloud

The Basics
How Attackers Exploit them
Identify and Manage

Secrets detection is a foundational
part of your AppSec program

Table of
Contents

Introduction

How Apiiro Can Help

to Manage Secrets in Code

10

09

03

02

Secrets in Code

Take Aways

The Top 5 Steps

01

Managing Secrets in Code

https://docs.google.com/document/d/1FEjWmx85W6lOUuI6oG7Cr6s2y6fqsg-Ca2QBqIBLnlo/edit#heading=h.iy9pqf81kal9
https://docs.google.com/document/d/1FEjWmx85W6lOUuI6oG7Cr6s2y6fqsg-Ca2QBqIBLnlo/edit#heading=h.iy9pqf81kal9
https://docs.google.com/document/d/1FEjWmx85W6lOUuI6oG7Cr6s2y6fqsg-Ca2QBqIBLnlo/edit#heading=h.iy9pqf81kal9
https://docs.google.com/document/d/1FEjWmx85W6lOUuI6oG7Cr6s2y6fqsg-Ca2QBqIBLnlo/edit#heading=h.iy9pqf81kal9
https://docs.google.com/document/d/1mUo3a1dxRKelhqyeI8LJvog3o3RL7IPTv1-7fHFgAHo/edit#heading=h.dw8uqnvl2aio

Software development has fundamentally changed - and
security experts need to change with it. Engineers no longer write
code in isolation on desktops or laptops, where an attacker
compromising a device could only access locally-stored files.

Cloud-based development has transformed the security model
so developers often have expanded access to the entire
application. With the rise of DevOps, the same developers (and
developer identities) have the ability to make changes to
production environments. A single compromised identity can now
have a catastrophic impact on the security of the entire
application and infrastructure.

Secrets detection now needs to be a foundational part of
any Application Security program.

Finding secrets in code sounds simple. Just look for field names
like “password”, “token”, or “API_Key”. Maybe dig a little deeper to
search for commonly-used passwords or look for randomly-
generated strings of specific lengths.

Unfortunately, there is a lot of nuance and complexity to both
understanding the impact of secrets in code, detecting them in
the first place, and not being overwhelmed with endless false-
positives but the key to managing secrets in code is context.

In this eBook, we will help you understand:

Introduction

02

5 steps you can follow to identify and manage secrets

What attackers can do with the secrets they find

Why secrets are so commonly found in code

Types of secrets

How attackers can find secrets in your code

03

Why developers put secrets in their code
It’s easy to say that developers should be more careful and
better follow best practices but the truth is that developers
are under increasing pressure to deliver. Hard-coding a token
or password may be a temporary hack before implementing
a better solution later on…... that conveniently gets forgotten
about as the next priority comes along.

Developers don't always have the visibility into where their
code is deployed, so they don't have an end-to-end view of
the risk. In addition, old code. Or old code can be deployed in
new ways that were never anticipated by the original
developer. It is also common to see stored secrets that were
intended to never leave the development environment make
their way into production.

Where secrets are found
you can find secrets in many places, including:

Secrets of each type can be in multiple environments, from
staging to production. The challenge is to identify these
places automatically and quantify risk for secrets in
production source code vs. secrets in test code in staging
and other environments.

Secrets in Code

The Basics

Package Management Files

Scripts

Documentation

Configuration Files

Source Code

Infra-as-Code

Test Code

Project Files

Tokens can replace less secure usernames and passwords
and are used in authentication mechanisms such as OAuth.

There are many types of secrets that developers
can put into code. These include:

Digital certificates are used to authenticate and “prove” an
identity.

Private encryption keys can either be used in symmetric key
encryption or can be the private half of Public Key
Infrastructure (PKI) key pair.

The simplest type of secret is a username and password
combination that is stored in plain-text.

Application Programming Interface (API) keys can grant
privileged access to key API settings.

Secrets in Code
Types of code secrets

User
passwords: API keys:

Authentication
tokens:

Private
encryption

keys:

Digital
certificates,
and more:

1 2

3 4 5

Types of code secrets

User passwords:

Private encryption keys:

Digital certificates, and more:

Authentication tokens:

API keys:

04

05

How attackers get access to code secrets
Adversaries will look for secrets in any given code or data
pools they can get their hands on. Low-hanging fruit will be
trivially excavated from source code either from a git
repository or in another form, such as client-side code (i.e.,
javascript processed by a browser). Even binaries are not
immune to reverse engineering attacks, especially when
discussing code packages that use intermediate languages,
which doesn’t skip popular mobile binaries.

What attackers can do with the secrets they find
The most sophisticated attacks are multi-step and a single
secret can be a launch point to further command and
control. If an attacker is able to find a hard-coded token, they
can use it to gain whatever access that token grants. Using
the right token, an attacker can impersonate a valid user or
service and then use other means to escalate privileges or
“jump” horizontally to other systems that use that token.

The main issue with having secrets in your code is that it
short-circuits many of your defenses. For example, even if you
have a SaaS product and your cloud infrastructure is secure,
an attacker could use social engineering or other methods to
gain access to a developer account and access the code to
find and exploit the secret. And if you have 1,000 developers,
all they need is access to one account!

Secrets in Code

How Attackers Exploit them

Illustration 1
All attackers need is one developer identity

06

The main reason secrets detection is so difficult is that there
are many types of secrets. Some values are strictly formatted
for ease of recognition. For example, certificates and access
tokens are generally formatted in standard ways & are easy
to find, with few false positives and false negatives. Modern
token formats enact several mechanisms to eliminate false
positives, most prominently a checksum - a mathematical
computation that checks for token validity by concatenating
a trail of values at the end of the token. But not every token
format features these abilities to minimize false-positives and
not every tool will be tuned for utilizing it.

Other types of data are less structured and consist of long
strings of random characters and may be encrypted or
hashed. The problem is that you can’t tell what you’re
looking at if you don’t understand the code! If you find 100

seemingly “random” strings, some will be test files. Some will
be binary files. Some will be encrypted or hashed. These are
all normal to have in code and a tool should be able to
distinguish them.

Cryptographic keys are usually long enough that you can use
statistics to determine if the string is sufficiently random
enough to be a key, but for many types of files, it isn’t clear-
cut and the problem becomes: how many false positives can
you accept?

The other challenge has become the speed of development.
Any organization can perform an ad hoc code review and
identify a good number of secrets from a detailed manual
search, but this isn’t a scalable solution.

Detecting secrets is a surprisingly complex challenge

Secrets in Code

Identify & Remediate

Illustration 2
Exposed secrets on code

07

There are multiple things you can do to identify secrets,
remediate issues, and reduce your risk:

Follow Key Management Best Practices.
Current security requirements call for passwords & tokens to
be used only once but that’s unfortunately not the reality.
Developers will use API keys in test environments & the same
keys for staging and production. Passwords that were always
intended to be temporary get missed and left in production
software in a rush to meet deadlines. Apiiro has identified
keys stored in our customers’ test environments and gotten
an earful about overly-sensitive alerts, only to discover that
those same keys were used in production. In addition, security
practices need to be followed even in test environments.

Use a third-party Secrets Detection solution.
These tools will usually employ a combination of Regular
Expressions (RegEx) to detect patterns in code that indicate
a secret as well as entropy checks to detect randomness that
may indicate a password or key and checks for checksum
validity, if possible.

Understanding and remediating the risk of secrets-in-code
cannot be done in isolation. There is a significant difference in
risk between finding a secret in an application with low
business impact that is deployed on-premises compared to
finding a similar secret in a high business impact application
that stores PII! Risk is multidimensional and secrets-in-code
is only one part of the larger picture surrounding
multidimensional application risk.

What you can do about it

Secrets detection is not
a stand-alone function!

Illustration 3
Discover secrets once
they are added
to your source code

https://blog.apiiro.com/code-risk-is-multi-dimensional

08

There is an entire industry around detecting secrets in
code but there are a few ways that many existing
solutions fall short:

Code context.
Without a deep understanding of the code, it is difficult to
minimize false positive rates. With an understanding of how
the code functions, it is possible to test potential passwords,
API keys, and more in a way similar to how the actual code
would use them. This improves detection (and false positive
rates) by orders of magnitude.

Developer Behavior.
Existing solutions do not understand individual developers in
order to minimize false positives.If a particular developer has
added multiple secrets to code in the past, the certainty
score for secrets is higher than for developers who do not
have a history of mismanaging secrets in code.

History.
Many solutions only evaluate the current source code but
entirely ignore secrets that may be stored in previous versions
of the application across all test environments. While secrets
stored in the history of your source code manager cannot be
captured by reverse engineering a binary, they still pose a risk
in the event of a hacker gaining access to the source code
repository, which holds all historic revisions as well.

Where existing solutions
fall short

Visibility. Identify secrets in your code using a combination
of processes and tools, and aspire to have that visibility at
earlier steps of the development - as early as a code
commit/pull-request arrives for approval

Risk Prioritization Prioritize remediation of secrets in code
according to the contextual risk. Not all secrets are the same.
Carefully weigh the sensitivity of the application, the type of
data stored, & the business impact of unauthorized access!

Remediation. Assign a remediation task (or comment on the
pull request) to the appropriate developer and alert the
relevant Security Champion and Architect (via a ticketing or
messaging system).

 Define a workflow to automatically block pull
requests and provide remediation actions the next time this
type of secret is detected.

Training. Provide appropriate training for the developers who
mismanage secrets.

Top 5 Steps to
Manage Secrets in Code

Illustration 4

Detection Risk
Prioritization

Remediation Prevention Training

1 2

3 4 5

The Top 5 Steps to Manage Secrets in Code

Here are the top 5 phases to manage secrets in code:

Detection

Prevention

Training

Remediation

Risk Prioritization

09

Apiiro provides real-time, continuous and contextual detection of secrets, with automated workflows so you
can manage your code and your risk as new secrets are introduced. Our Code Risk Platform automates &
orchestrates secrets discovery, remediation, and prevention:

TM

How Apiiro Can Help

Identify Repositories
With exposed secrets across the entire history of your code.

Differentiate Secrets Type
Between exposed secrets, hashed, salted, etc.

Distinguish Between Environments
Such as secrets in Test, Development, QA, and Production.

Creates automated workflows
Including comments on the pull request, send the appropriate
alerts, etc. All using your existing tools, from Jira to Slack!

Provide Contextual Guidance
Understands which key management systems are already in
place and instructs developers on how to remediate each
issue instead of only showing alerts.

10

Apiiro uses the latest algorithms for entropy detection of crypto keys and leverages our deep understanding of
the code to evaluate the context of each secret we find in order to lower false positive rates and better prioritize
each issue by business impact.
Make secrets detection an essential part of your risk-based AppSec program with Apiiro!

Illustration 5
Search and filter

secrets in code
on all products

 Define Success with
risk-based metrics that help you measure your AppSec program
at both business & technical levels & Gain Risk-Based Visibility

Application Inventory & Asset Discovery

 Approach the SSDLC
holistically with a risk dashboard that covers all SSDLC processes
SSDLC Processes & Tools Orchestration

 Shift Left & Extend Right with
Security Champion identification and the context to trigger
context-sensitive developer training

Git & CI/CD Security and Integrity

 Remediate Risks that Matter,
with a risk-based Remediation Work Plan
Security & Compliance Assurance

Automate Code Governance with detailed workflows and a flexible
Code Governance Engine

Apiiro is re-inventing the secure development lifecycle for agile
and cloud-native development, with 5 solutions:

Apiiro helps you build a risk-based & measurable AppSec
program. Our Application Risk Management platform provides
complete risk visibility & control, from design to code to cloud. Our
multidimensional approach to application security will help
accelerate application delivery while reducing costs and risk.

Risk Assessment & Change Management

Illustration 6
Apiiro solutions

About Apiiro

Learn More

11

https://apiiro.com/application-inventory-asset-discovery/

